On the B-canonical Splittings of Flag Varieties

نویسنده

  • CHUCK HAGUE
چکیده

Let G be a semisimple algebraic group over an algebraically closed field of positive characteristic. In this note, we show that an irreducible closed subvariety of the flag variety of G is compatibly split by the unique canonical Frobenius splitting if and only if it is a Richardson variety, i.e. an intersection of a Schubert and an opposite Schubert variety.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak Splittings of Quotients of Drinfeld and Heisenberg Doubles

We investigate the fine structure of the symplectic foliations of Poisson homogeneous spaces. Two general results are proved for weak splittings of surjective Poisson submersions from Heisenberg and Drinfeld doubles. The implications of these results are that the torus orbits of symplectic leaves of the quotients can be explicitly realized as Poisson–Dirac submanifolds of the torus orbits of th...

متن کامل

Poisson Structures on Affine Spaces and Flag Varieties . Ii

The standard Poisson structures on the flag varieties G/P of a complex reductive algebraic group G are investigated. It is shown that the orbits of symplectic leaves in G/P under a fixed maximal torus of G are smooth irreducible locally closed subvarieties of G/P , isomorphic to intersections of dual Schubert cells in the full flag variety G/B of G, and their Zariski closures are explicitly com...

متن کامل

Poisson Structures on Affine Spaces and Flag Varieties

The standard Poisson structures on the flag varieties G/P of a complex reductive algebraic group G are investigated. It is shown that the orbits of symplectic leaves in G/P under a fixed maximal torus of G are smooth irreducible locally closed subvarieties of G/P , isomorphic to intersections of dual Schubert cells in the full flag variety G/B of G, and their Zariski closures are explicitly com...

متن کامل

Large Schubert Varieties

For a semisimple adjoint algebraic group G and a Borel subgroup B, consider the double classes BwB in G and their closures in the canonical compactification of G; we call these closures large Schubert varieties. We show that these varieties are normal and Cohen-Macaulay; we describe their Picard group and the spaces of sections of their line bundles. As an application, we construct geometricall...

متن کامل

. A G ] 2 6 A pr 1 99 9 LARGE SCHUBERT VARIETIES MICHEL

For a semisimple adjoint algebraic group G and a Borel subgroup B, consider the double classes BwB in G and their closures in the canonical com-pactification of G: we call these closures large Schubert varieties. We show that these varieties are normal and Cohen-Macaulay; we describe their Picard group and the spaces of sections of their line bundles. As an application, we construct geometrical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009